
Assembly and Files under ProDOS

RTK, last update: 23-Jul-97

Assembly and Files

 This file is specific to the Apple II series of computers running ProDOS. It

 explains how to make simple use of disk files via assembly language.

==

 1. MLI and commands

 2. Detailed command descriptions

 3. Programming example

MLI and commands

 Most disk access from within an Apple II assembly language program

 uses the machine language interface supplied by the ProDOS operating

 system. Commands consist of a call to $BF00 followed by a table of

 command parameters. If ProDOS returns a value it is returned in a

 location within this table. MacQForth implements a useful subset of

 the standard ProDOS commands. The general form of a command is:

 JSR $BF00 ; call ProDOS to do the command

 (command-number)

 (address-of-parameter-table)

 (execution returns to here when finished)

 If an error happens, the carry flag is set and the accumulator

 contains the error code. MacQForth returns 0 if no error or the

 absolute value of the corresponding Macintosh file error number if an

 error happened.

 The contents of the parameter table vary from command to command, but

 a general form is:

 (number-of-parameters)

 (parameters)

 .

 .

 So, a possible assembly language calling sequence to read some data

 from an open file (file 0) might be:

 ldx #$00

 ldy #$10

 sty params+4

 stx params+5 ; setup number of bytes to read (16)

 jsr $BF00 ; call ProDOS

 .BYTE $CA ; ProDOS command number = CA (read)

 .WORD params ; address of parameter table, lo/hi

 bcs error ; carry set, error

 .

 .

 params .BYTE $04 ; number of parameters for a read

 .BYTE $00 ; file reference number, 0, 1, 2 in MacQForth

 .WORD BUFFER ; pointer to data buffer

 .WORD $0000 ; requested number of bytes to read, fill in

 .WORD $0000 ; number actually read, returned by ProDOS

 The following ProDOS commands are available and their parameters are

 outlined below:

 $C0 = create a new file

 $C1 = destroy an existing file

 $C4 = get file info (a dummy command, do not use)

 $C8 = open a file (reference numbers 0, 1, or 2)

 $CA = read from a file

 $CB = write to a file

 $CC = close a file

 $CE = position file marker

 $65 = bye, cause MacQForth to quit, use to quit the application

 from within an assembly language program

 Note: Do not use "/" as the directory separator. Instead, use ":" which

 is the normal Mac separator. Remember that pathnames are stored as

 length/text. So, the pathname for the file "ABC" is stored (in decimal)

 as 3,65,66,67. (Minus commas, of course!)

Detailed command descriptions

 Command parameters marked as _required_ are necessary for MacQForth,

 those marked as _ignored_ are not. Any value can be in the _ignored_

 field. If a parameter is returned it is indicated as a (result) and

 space must be made for the value.

 ** Create a new file

 command number $C0

 parameters:

 0 (number-of-parameters) (7) _required_

 +1 (pointer to pathname) _required_

 +3 (access code) _ignored_

 +4 (file type code) _ignored_

 +5 (auxilliary type code) _ignored_

 +7 (storage type) _ignored_

 +8 (date of creation) _ignored_

 +10 (time of creation) _ignored_

 ** Destroy an existing file

 command number $C1

 parameters:

 0 (number-of-parameters) (1) _required_

 +1 (pointer to pathname) _required_

 ** Open an existing file

 command number $C8

 parameters:

 0 (number-of-parameters) (3) _required_

 +1 (pointer to pathname) _required_

 +3 (pointer to i/o buffer) _required_**

 +5 (reference number, 0, 1, 2) _required_ (result)

 ** MacQForth is trailored to running QForth. Therefore,

 you can use at most three files corresponding to reference

 numbers 0, 1, and 2. MacQForth determines which file

 QForth wants to use by the address of this buffer. The

 buffer itself is unused but it _must_ be one of the

 following addresses, in lo/hi format,

 File 0 = 00:A6

 File 1 = 00:A2

 File 2 = 00:9E

 ** Read from an open file

 command number $CA

 parameters:

 0 (number-of-parameters) (4) _required_

 +1 (file reference number) _required_

 +2 (pointer to data buffer) _required_

 +4 (requested number of bytes) _required_

 +6 (number actually read) _required_ (result)

 ** Write to an open file

 command number $CB

 parameters:

 0 (number-of-parameters) (4) _required_

 +1 (file reference number) _required_

 +2 (pointer to data buffer) _required_

 +4 (requested number of bytes) _required_

 +6 (number actually written) _required_ (result)

 ** Close an open file

 command number $CC

 parameters:

 0 (number-of-parameters) (1) _required_

 +1 (file reference number) _required_

 ** Position file marker within an open file

 command number $CE

 parameters:

 0 (number-of-parameters) (2) _required_

 +1 (file reference number) _required_

 +2 (file position, *3* bytes) _required_

 ** Bye

 command number $65

 parameters:

 0 (number-of-parameters) (4) _ignored_

 +1 (quit type code) _ignored_

 +2 (pointer to quit code) _ignored_

 +4 (a reserved value) _ignored_

 +5 (a reserved pointer) _ignored_

Programming example

 A simple programming example to create a new file named "ABC" and

 write some text to it. Also in FILE.S in the DEMO folder.

 ;

 ; MakeFile -- creates a file and writes some data. Ignores errors.

 ;

 *= $300

 ; create the file "ABC"

 lda #$01 ; setup for 'create'

 sta PARAMS

 lda #<NAME ; low byte of name address

 sta PARAMS+1

 lda #>NAME ; high byte of name address

 sta PARAMS+2

 lda #$C0 ; create command

 sta MLI+3 ; put in table

 jsr MLI ; create the file

 ; open the file

 lda #$03

 sta PARAMS ; adjust number of parameters, name already set

 lda #$00

 sta PARAMS+3

 lda #$A6

 sta PARAMS+4 ; use file 0

 lda #$C8 ; open command

 sta MLI+3

 jsr MLI ; open the file

 ; write to the file

 lda #$04

 sta PARAMS

 lda PARAMS+5 ; get reference number returned by open

 sta PARAMS+1 ; and put in for write

 sta REF ; and save for close

 lda #<STRING

 sta PARAMS+2 ; pointer to data

 lda #>STRING

 sta PARAMS+3

 lda #$05 ; number of bytes to write

 sta PARAMS+4

 lda #$00

 sta PARAMS+5

 lda #$CB ; write command

 sta MLI+3

 jsr MLI ; write the data

 ; close the file

 lda #$01

 sta PARAMS

 lda REF ; put in reference number

 sta PARAMS+1

 lda #$CC ; close command

 sta MLI+3

 jsr MLI ; close the file

 rts ; and end

 ; call MLI

 MLI jsr $BF00 ; call ProDOS

 .byte $00 ; command number

 .word PARAMS ; address of parameter table

 rts

 ; data

 NAME .byte 3,"ABC" ; name of the file with length

 STRING .byte "Hello",0 ; data to write

 REF .byte $00 ; ProDOS reference number

 PARAMS .dbyt $0000 ; ProDOS parameter table

 .dbyt $0000

 .dbyt $0000

 .dbyt $0000

